Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648199

RESUMO

The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.

2.
J Proteomics ; 299: 105156, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467267

RESUMO

Plants exhibit phenotypic plasticity in response to environmental variations, which can lead to stable genetic and physiological adaptations if exposure to specific conditions is prolonged. Myrsine coriacea demonstrates this through its ability to thrive in diverse environments. The objective of the article is to investigate potential differences in protein accumulation and physiological responses of M. coriacea by cultivating plants from seeds collected from four populations at different altitudes in a common garden experiment. Additionally, we aim to evaluate whether these differences exhibit genetic fixation. Through integrated physiological and proteomic analyses, we identified 170 differentially accumulated proteins and observed significant physiological differences among the populations. The high-altitude population (POP1) exhibited a unique proteomic profile with significant down-regulation of proteins involved in carbon fixation and energy metabolism, suggesting a potential reduction in photosynthetic efficiency. Physiological analyses showed lower leaf nitrogen content, net CO2 assimilation rate, specific leaf area, and relative growth rate in stem height for POP1, alongside higher leaf carbon isotopic composition (δ13C) and leaf carbon (C) content. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations. SIGNIFICANCE: We investigate the adaptive responses of M. coriacea, a shrub with a broad phenotypic range, by cultivating plants from seeds collected at four different altitudes in a common garden experiment. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations in the face of climate change. This study contributes to advancing our understanding of the influence of altitude-specific selection pressures on the molecular biology and physiology of plants in natural populations. Our findings provide valuable insights that enhance our ability to predict and comprehend how plants respond to climate change.


Assuntos
Altitude , Myrsine , Proteômica , Adaptação Fisiológica , Plantas , Carbono
3.
Plant Physiol Biochem ; 208: 108444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382344

RESUMO

Under conditions of soil water limitation and adequate irrigation, we conducted an investigation into the growth dynamics, gas exchange performance, and proteomic profiles of two inbred popcorn lines-L71, characterized as drought-tolerant, and L61, identified as drought-sensitive. Our goal was to uncover the mechanisms associated with tolerance to soil water limitation during the flowering. The plants were cultivated until grain filling in a substrate composed of perlite and peat within 150cm long lysimeter, subjected to two water conditions (WC): i) irrigated (WW) at lysimeter capacity (LC - 100%), and ii) water-stressed (WS). Under WS conditions, the plants gradually reached 45% of LC and were maintained at this level for 10 days. Irrespective of the WC, L71 exhibited the highest values of dry biomass in both shoot and root systems, signifying its status as the most robust genotype. The imposed water limitation led to early senescence, chlorophyll degradation, and increased anthocyanin levels, with a more pronounced impact observed in L61. Traits related to gas exchange manifested differences between the lines only under WS conditions. A total of 1838 proteins were identified, with 169 differentially accumulated proteins (DAPs) in the tolerant line and 386 DAPs in the sensitive line. Notably, differences in energy metabolism, photosynthesis, oxidative stress response, and protein synthesis pathways were identified as the key distinctions between L71 and L61. Consequently, our findings offer valuable insights into the alterations in proteomic profiles associated with the adaptation to soil water limitation in popcorn.


Assuntos
Estresse Fisiológico , Zea mays , Zea mays/metabolismo , Estresse Fisiológico/genética , Secas , Proteômica , Solo/química , Água/metabolismo
4.
Plants (Basel) ; 12(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005788

RESUMO

Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 µM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.

5.
Sci Rep ; 13(1): 19400, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938583

RESUMO

Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.


Assuntos
Alumínio , Transcriptoma , Alumínio/toxicidade , Zea mays/genética , Produtos Agrícolas , Processamento Alternativo
6.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838467

RESUMO

Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.

7.
Protoplasma ; 260(2): 467-482, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35788779

RESUMO

Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 µM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.


Assuntos
Amaranthaceae , Proteômica , Azacitidina/farmacologia , Cloreto de Sódio/farmacologia , Tolerância ao Sal/genética , Epigênese Genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
8.
Sci Rep ; 12(1): 1521, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087128

RESUMO

We investigated the proteomic profiles of two popcorn inbred lines, P2 (N-efficient and N-responsive) and L80 (N-inefficient and nonresponsive to N), under low (10% of N supply) and high (100% of N supply) nitrogen environments, associated with agronomic- and physiological-related traits to NUE. The comparative proteomic analysis allowed the identification of 79 differentially accumulated proteins (DAPs) in the comparison of high/low N for P2 and 96 DAPs in the comparison of high/low N for L80. The NUE and N uptake efficiency (NUpE) presented high means in P2 in comparison to L80 at both N levels, but the NUE, NUpE, and N utilization efficiency (NUtE) rates decreased in P2 under a high N supply. DAPs involved in energy and carbohydrate metabolism suggested that N regulates enzymes of alternative pathways to adapt to energy shortages and that fructose-bisphosphate aldolase may act as one of the key primary nitrate responsive proteins in P2. Proteins related to ascorbate biosynthesis and nitrogen metabolism increased their regulation in P2, and the interaction of L-ascorbate peroxidase and Fd-NiR may play an important role in the NUE trait. Taken together, our results provide new insights into the proteomic changes taking place in contrasting inbred lines, providing useful information on the genetic improvement of NUE in popcorn.


Assuntos
Proteômica
9.
Planta ; 254(6): 132, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821986

RESUMO

MAIN CONCLUSION: Al responsive proteins are associated with starch, sucrose, and other carbohydrate metabolic pathways. Sucrose synthase is a candidate to Al tolerance. Al responses are regulated at transcriptional and post-transcriptional levels. Aluminum toxicity is one of the important abiotic stresses that affects worldwide crop production. The soluble form of aluminum (Al3+) inhibits root growth by altering water and nutrient uptake, a process that also reduces plant growth and development. Under long-term Al3+ exposure, plants can activate several tolerance mechanisms. To date, no reports of large-scale proteomic data concerning maize responses to this ion have been published. To investigate the post-transcriptional regulation in response to Al toxicity, we performed label-free quantitative proteomics for comparative analysis of two Al-contrasting popcorn inbred lines and an Al-tolerant commercial hybrid during 72 h under Al-stress conditions. A total of 489 differentially accumulated proteins (DAPs) were identified in the Al-sensitive inbred line, 491 in the Al-tolerant inbred line, and 277 in the commercial hybrid. Among them, 120 DAPs were co-expressed in both Al tolerant genotypes. Bioinformatics analysis indicated that starch, sucrose, and other components of carbohydrate metabolism and glycolysis/gluconeogenesis are the biochemical processes regulated in response to Al toxicity. Sucrose synthase accumulation and an increase in sucrose content and starch degradation suggest that these components may enhance popcorn tolerance to Al stress. The accumulation of citrate synthase suggests a key role for this enzyme in the detoxification process in the Al-tolerant inbred line. The integration of transcriptomic and proteomic data indicates that the Al tolerance response presents a complex regulatory network into the transcription and translation dynamics of popcorn root development.


Assuntos
Alumínio , Proteômica , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico , Zea mays/genética , Zea mays/metabolismo
10.
Sci Rep ; 11(1): 19644, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608228

RESUMO

To date, the investigation of genes involved in Al resistance has focused mainly on microarrays and short periods of Al exposure. We investigated genes involved in the global response under Al stress by tracking the expression profile of two inbred popcorn lines with different Al sensitivity during 72 h of Al stress. A total of 1003 differentially expressed genes were identified in the Al-sensitive line, and 1751 were identified in the Al-resistant line, of which 273 were shared in both lines. Genes in the category of "response to abiotic stress" were present in both lines, but there was a higher number in the Al-resistant line. Transcription factors, genes involved in fatty acid biosynthesis, and genes involved in cell wall modifications were also detected. In the Al-resistant line, GST6 was identified as one of the key hub genes by co-expression network analysis, and ABC6 may play a role in the downstream regulation of CASP-like 5. In addition, we suggest a class of SWEET transporters that might be involved in the regulation of vacuolar sugar storage and may serve as mechanisms for Al resistance. The results and conclusions expand our understanding of the complex mechanisms involved in Al toxicity and provide a platform for future functional analyses and genomic studies of Al stress in popcorn.


Assuntos
Alumínio/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Zea mays/genética , Zea mays/metabolismo , Alumínio/toxicidade , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Anotação de Sequência Molecular , Melhoramento Vegetal
11.
Plants (Basel) ; 10(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579378

RESUMO

The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.

12.
Virus Res ; 292: 198234, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232784

RESUMO

To evaluate and quantify the evolutionary dynamics of the bipartite begomovirus tomato severe rugose virus (ToSRV) in a cultivated and a non-cultivated host, plants of tomato and Nicandra physaloides were biolistically inoculated with an infectious clone and systemically infected leaves were sampled at 30, 75 and 120 days after inoculation. Total DNA was extracted and sequenced in the Illumina HiSeq 2000 platform. The datasets were trimmed with the quality score limit set to 0.01, and the assembly was performed using the infectious clone sequence as reference. SNPs were filtered using a minimum p-value of 0.001 and the sum frequencies were used to calculate the deviation from the original clone sequence. Nucleotide substitution rates were calculated for the two DNA components in both hosts: 1.73 × 10-3 and 3.07 × 10-4 sub/site/year for the DNA-A and DNA-B, respectively, in N. physaloides, and 8.05 × 10-4 and 7.02 × 10-5 sub/site/year the for DNA-A and DNA-B, respectively, in tomato. These values are in the same range of those estimated for viruses with single-stranded RNA genomes and for other begomoviruses. Strikingly, the number of substitutions decreased over time, suggesting the presence of bottlenecks during systemic infection. Determination of Shannon's entropy indicated different patterns of variation in the DNA-A and the DNA-B, suggesting distinct evolutionary forces acting upon each component.


Assuntos
Begomovirus/genética , DNA Viral/genética , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Begomovirus/fisiologia , Evolução Molecular , Genoma Viral , Filogenia
13.
PLoS One ; 14(9): e0219417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553737

RESUMO

Linkage disequilibrium (LD) analysis provides information on the evolutionary aspects of populations. Recently, haplotype blocks have been used to increase the power of quantitative trait loci detection in genome-wide association studies and the prediction accuracy of genomic selection. Our objectives were as follows: to compare the degree of LD, LD decay, and LD decay extent in popcorn populations; to characterize the number and length of haplotype blocks in the populations; and to determine whether maize chromosomes also have a pattern of interspaced regions of high and low rates of recombination. We used a biparental population, a synthetic, and a breeding population, genotyped for approximately 75,000 single nucleotide polymorphisms (SNPs). The sample size ranged from 190 to 192 plants. For the whole-genome LD and haplotype block analyses, we assumed a window of 500 kb. To characterize the block and step patterns of LD in the populations, we constructed LD maps by chromosome, defining a cold spot as a chromosome segment including SNPs with the same LDU position. The LD and haplotype block analyses were also performed at the intragenic level, selecting 12 genes related to zein, starch, cellulose, and fatty acid biosynthesis. The populations with the higher and lower frequencies of |D'| values greater than 0.75 were the biparental (65-74%) and the breeding population (26-58%), respectively. There were slight differences between the populations regarding the average distance for SNPs with |D'| values greater than 0.75 (in the range of approximately 207 to 229 kb). The level of LD expressed by the r2 values was low in the populations (0.02, 0.04, and 0.04, on average) but comparable to some non-isolated human populations. The frequency of r2 values greater than 0.75 was lower in the biparental population (0.2-0.5%) and higher in the other populations (0.2-1.6%). The average distance for SNPs with r2 values greater than 0.75 was much higher in the biparental population (approximately 80 to 126 kb). In the other populations, the ranges were approximately 6 to 19 and 6 to 35 kb. The heatmaps for the regions covered by the first 100 SNPs in each chromosome, in each population (1 to 3.3 Mb, approximately), provided evidence that the comparatively few high r2 values (close to 1.0) occurred only for SNPs in close proximity, especially in the synthetic and breeding populations. Due to the reduced number of SNPs in the haplotype blocks (2 to 3) in the populations, it is not expected advantage of a haplotype-based association study as well as genomic selection along generations. The results concerning LD decay (rapid decay after 5-10 kb) and LD decay extent (along up to 300 kb) are in the range observed with maize inbred line panels. The LD maps indicate that maize chromosomes had a pattern of regions of extensive LD interspaced with regions of low LD. However, our simulated LD map provides evidence that this pattern can reflect regions with differences in allele frequencies and LD levels (expressed by |D'|) and not regions with high and low rates of recombination.


Assuntos
Haplótipos , Desequilíbrio de Ligação , Zea mays/classificação , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Front Plant Sci ; 10: 276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915092

RESUMO

We report the first high-density linkage map construction through genotyping-by-sequencing (GBS) in leaf chicory (Cichorium intybus subsp. intybus var. foliosum, 2n = 2x = 18) and the SNP-based fine mapping of the linkage group region carrying a recessive gene responsible for male-sterility (ms1). An experimental BC1 population, segregating for the male sterility trait, was specifically generated and 198 progeny plants were preliminary screened through a multiplexed SSR genotyping analysis for the identification of microsatellite markers linked to the ms1 locus. Two backbone SSR markers belonging to linkage group 4 of the available Cichorium consensus map were found genetically associated to the ms1 gene at 5.8 and 12.1 cM apart. A GBS strategy was then used to produce a high-density SNP-based linkage map, containing 727 genomic loci organized into 9 linkage groups and spanning a total length of 1,413 cM. 13 SNPs proved to be tightly linked to the ms1 locus based on a subset of 44 progeny plants analyzed. The map position of these markers was further validated by sequence-specific PCR experiments using an additional set of 64 progeny plants, enabling to verify that four of them fully co-segregated with male-sterility. A mesosynteny analysis revealed that 10 genomic DNA sequences encompassing the 13 selected SNPs of chicory mapped in a peripheral region of chromosome 5 of lettuce (Lactuca sativa L.) spanning about 18 Mbp. Since a MYB103-like gene, encoding for a transcription factor involved in callose dissolution of tetrads and exine development of microspores, was found located in the same chromosomal region, this orthologous was chosen as candidate for male-sterility. The amplification and sequencing of its CDS using accessions with contrasting phenotypes/genotypes (i.e., 4 male sterile mutants, ms1ms1, and 4 male fertile inbreds, Ms1Ms1) enabled to detect an INDEL of 4 nucleotides in its second exon, responsible for an anticipated stop codon in the male sterile mutants. This polymorphism was subsequently validated through allele-specific PCR assays and found to fully co-segregate with male-sterility, using 64 progeny plants of the same mapping BC1 population. Overall, our molecular data could be practically exploited for genotyping plant materials and for marker-assisted breeding schemes in leaf chicory.

15.
Arch Virol ; 161(3): 735-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26660167

RESUMO

Begomoviruses are whitefly-transmitted, single-stranded DNA viruses that cause serious infections in crop plants and are often also associated with non-cultivated plants. Here, we report the detection of two new begomoviruses in Pavonia sp. (Malvaceae). Sequence comparisons and phylogenetic analysis showed that these novel viruses are related to New World begomoviruses. The nucleotide sequences of the DNA-A of both viruses had the highest similarity to abutilon mosaic Bolivia virus (AbMBoV). Based on symptoms observed in the field and considering the host, we propose the names pavonia mosaic virus (PavMV) and pavonia yellow mosaic virus (PavYMV) for these two new begomoviruses.


Assuntos
Begomovirus/classificação , Begomovirus/isolamento & purificação , DNA Viral/química , DNA Viral/genética , Genoma Viral , Malvaceae/virologia , Begomovirus/genética , Brasil , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Plantas , Análise de Sequência de DNA , Homologia de Sequência
16.
Ciênc. rural ; 45(3): 418-424, 03/2015. tab, graf
Artigo em Português | LILACS | ID: lil-741408

RESUMO

O objetivo deste estudo foi avaliar as condições ecogeográficas e edafoclimáticas dos ambientes de ocorrência da erva-baleeira (Varronia curassavica) nas mesorregiões Norte e Vale do Jequitinhonha de Minas Gerais. O estudo foi efetuado em 15 sítios de ocorrência dessa espécie, localizados em 14 municípios sob o bioma Cerrado e ocorreu nos tipos de vegetação Cerrado, Caatinga, restinga e floresta. Os sítios estão localizados predominantemente entre 495 e 895m de altitude, e as plantas localizam-se sempre na parte inferior da topossequência. A precipitação média anual variou de <1.000mm a 1.500mm e a temperatura média anual variou de <19 a 24°C. A espécie tolera solos fortemente ácidos e com alta saturação de alumínio, ocorrendo em diferentes níveis de fertilidade e classes de solo. Nas mesorregiões Norte e Vale Jequitinhonha de Minas Gerais, a erva-baleeira não apresentou condições ecogeográficas e edafoclimáticas específicas para a sua ocorrência.


The objective of this study was to evaluate the ecogeographic and edaphoclimatic conditions of the environments of occurrence of Cordia (Varronia curassavica) at the mesoregions Northern and Jequitinhonha Valley in Minas Gerais. The study was conducted in 15 places of occurrence of this species, located in 14 municipalities under the Cerrado biome and occurred in the Cerrado, Caatinga, marsh and, forest vegetation types. The places are located predominantly between 495 and 895m of altitude, and the plants are located always at the bottom of the top sequence. The annual average rainfall ranged from <1,000mm to 1,500mm and the annual average temperature ranged from <19 to 24°C. The species tolerates acid soils with high aluminum saturation, occurring at different fertility levels and soil types. In the mesoregions Northern and Jequitinhonha Valley in Minas Gerais the Cordia showed no ecogeographic and climatic specific conditions for its occurrence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...